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Lateral diffusion measurements, most commonly accomplished through Fluorescence Photobleach-
ing Recovery (FPR or FRAP), provide important information on cell membrane molecules’ size,
environment and participation in intermolecular interactions. However, serious difficulties arise when
these techniques are applied to weakly expressed proteins of either of two types: fusions of mem-
brane receptors with visible fluorescent proteins or membrane molecules on autofluorescent cells. To
achieve adequate sensitivity in these cases, techniques such as interference fringe FPR are needed.
However, in such measurements, cytoplasmic species contribute to the fluorescence recovery signal
and thus yield diffusion parameters not properly representing the small number of surface molecules.
A new method helps eliminate these difficulties. High Probe Intensity (HPI)-FPR measurements retain
the intrinsic confocality of spot measurements to eliminate interference from fluorescent cytoplasmic
species. However, HPI-FPR methods lift the previous requirement that FPR procedures be performed
at probe beam intensities low enough to not induce bleaching in samples during measurements.
The high probe intensities now employed provide much larger fluorescence signals and thus more
information on molecular diffusion from each measurement. We report successful measurement of
membrane dynamics by this technique.
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INTRODUCTION

Lateral diffusion measurements, most commonly ac-
complished through Fluorescence Photobleaching Recov-
ery (FPR4 or FRAP), provide important information on
molecules’, particularly membrane molecules’, size, en-
vironment and participation in intermolecular interactions
including ligand-driven associations.

FPR measurements on cellular membrane proteins
present various challenges. First, many such membrane
receptors are expressed at levels as low as 10,000 per
cell. Therefore, techniques must be employed which4
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deal with the correspondingly low fluorescence signals.
Second, fluorescent species in the cytoplasm, such as
visible fluorescent protein (VFP) constructs undergoing
transport to the membrane or autofluorescent cytoplasmic
compounds, are frequently present in cells to be exam-
ined. These cytoplasmic molecules contribute to the flu-
orescence recovery signal and thus distort measurements
aimed at surface molecules. Thus, FPR methods are re-
quired which examine cell membrane molecules without
interference from cytoplasmic species.

4 Abbreviations: 2H3, rat basophilic leukemia cells of the 2H3 cell
line; CHO, Chinese hamster ovary; D, diffusion coefficient; DMEM,
Dulbecco’s modified Eagle medium; erbB1, receptor tyrosine kinase
also known as epidermal growth factor receptor; FITC, fluorescein
isothiocyanate; FPR (or FRAP), fluorescence photobleaching recov-
ery; GFP, enhanced green fluorescent protein; HCG, human chorionic
gonadotropin; HPI, high probe intensity; IF, interference fringe; LH(R),
luteinizing hormone (receptor); M, fractional mobility; MEM, minimal
essential medium; NA, numerical aperture; TIR, total internal reflec-
tion; VFP, visible fluorescent protein.
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The common method of spot FPR [1] using a tightly
focused laser beam is easy to implement and the confo-
cality conferred by the image plane aperture substantially
eliminates cytoplasmic fluorescence. However, the fluo-
rescence signal obtainable from a sub-micrometer mem-
brane spot is typically small, especially given low levels of
receptor expression, and signal-to-noise ratios of individ-
ual fluorescence recovery traces are correspondingly low.
Thus large numbers of individual measurements typically
must be averaged to yield acceptable results.

To avoid this difficulty, we previously developed In-
terference Fringe Fluorescence Photobleaching Recovery
(IF-FPR) [2] to permit simultaneous interrogation of a
cell’s entire surface. In this method, a three-dimensional
fringe pattern is generated interferometrically within the
optical path of an FPR system by intersecting two laser
beams at the rear image plane of the objective. The fringe
pattern interrogates the entire cell at once and so affords
much increased signal levels and greatly improved re-
producibility of measurements. However, the technique
intrinsically possesses tremendous depth of field and so
collects fluorescence from the entire cell volume. Hence,
it is not satisfactory for cells expressing green fluores-
cent protein (GFP) fusion proteins or other cells with high
levels of cytoplasmic fluorescence. Total Internal Reflec-
tion (TIR) [3] allows selective excitation of fluorophores
contacting a glass–water interface since the evanescent
wave decays exponentially above the interface with a de-
cay length on the order of 100 nm. We have previously
combined objective-type TIR illumination with interfer-
ometric fringe generation to selectively measure lateral
diffusion of only membrane species on living cells [4].

Spot FPR methods allow a different strategy for im-
proving quality of data obtained. In such experiments in-
vestigators frequently increase the intensity of the probe
laser beam in an effort to improve signal levels. However,
photobleaching by the probe beam during such measure-
ments distorts the recovery kinetics in complex ways that
have, in the past, not fully been appreciated. This distor-
tion makes accurate estimates of the diffusion coefficient
and fractional mobility impossible when data are acquired
and analyzed by standard techniques [1]. This problem
has been encountered recently in a multiphoton-FPR ex-
periment on microinjected spiny dendrites of cerebellar
purkinje cells [5], where some data were discarded due to
excessive photobleaching in the probe beam. We have now
developed a method, a preliminary description of which
has appeared previously [4], which we term High Probe
Intensity Fluorescence Photobleaching Recovery (HPI-
FPR) and in which we increase the probe beam power up
to 10-fold over that typically used. We thus obtain substan-
tially more data per unit time from the illuminated region

which remains the same as in spot FPR. This higher probe
power causes marked sample photobleaching during re-
covery. Nonetheless, by acquiring data from the absolute
beginning of sample exposure to the probe beam and an-
alyzing these data as described below, accurate values for
diffusion parameters are obtained with precision improved
substantially over conventional spot methods.

EXPERIMENTAL METHODS

Materials

Minimal essential medium (MEM), Dulbecco’s
modified Eagle medium (DMEM) containing high glu-
cose, geneticin, cell culture antibiotic solutions, and fetal
bovine serum (FBS) were all purchased from Invitrogen,
Carlsbad, CA. Non-essential amino acids were purchased
from Sigma Chemical Co., St Louis, MO. Alexa 488
was purchased from Molecular Probes, Eugene, OR. G63
MAFA-specific mAb was a kind gift of Professor Israel
Pecht, Weizmann Institute of Science, Rehovot, Israel.

Cell Lines and Sample Preparation

Chinese hamster ovary (CHO) cells were stably
transfected with C-terminal fusion proteins of enhanced
GFP with wild-type rat luteinizing hormone receptor
(GFP-LHR cells) [6] and maintained in DMEM with high
glucose containing 10% fetal bovine serum, antibiotics
and non-essential amino acids, pH 7.4, supplemented with
200 µg/mL geneticin to select for cells expressing GFP
fusion proteins. Rat basophilic leukemia cells of the 2H3
line (2H3 cells) were maintained in MEM supplemented
with antibiotics and 15% FBS. All cells were grown at
100% humidity in 5% CO2 at 37◦C. After removal from
tissue culture flasks using 5 mM EDTA in PBS, cells were
pelleted at 300x × g and re-suspended in PBS. In some
experiments, 2H3 cells were labeled with Alexa 488 con-
jugates of G63 Fab as described previously [7]. Cells were
placed on well slides, overlaid with No. 1.5 Pyrex cov-
erslips and then inverted on the microscope. No fixation
or mounting agents were used and measurements were
performed out at room temperature.

Fluorescence Photobleaching Recovery
Measurements

The optical system for fluorescence photobleaching
recovery measurements has been described in detail [2].
The inverted Zeiss Axiomat microscope used in this study
was equipped with a Zeiss 63 × Plan Neofluar water im-
mersion objective, NA 1.2. An attenuated Coherent Radi-
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ation Innova 100 argon ion laser operating at 488 nm was
focused to a spot of 0.38 µm e−2 radius and a standard
Zeiss FITC-selective filter set was used for both Alexa 488
and GFP fluorophores. In conventional spot photobleach-
ing measurements, bleaching beam power was typically
6 mW. For HPI-FPR measurements, powers were approx-
imately 5- to 10-fold higher. The ratio of intensities in
the bleaching and probe beams was held constant at about
3000 and was measured carefully for HPI measurements.
A confocal image plane photometer aperture was used
in both conventional spot and HPI-FPR spot measure-
ments to eliminate out-of-plane fluorescence. HPI-FPR
measurements required that the sample be illuminated
with the probe laser beam only during data acquisition. To
permit accurate focusing on the sample, a 3 mW 635 nm
diode laser (Coherent Auburn Division, Auburn, CA) was
aligned co-linear with the optical axis. Objective focus at
the level of the cell membrane was detected by the ap-
pearance of a sharp spot of scattered red light. This laser
was turned off at the beginning of data acquisition. For all
experiments, data were acquired at 50 ms/point for 20 s
before and for 25 s after the bleaching pulse and were pro-
cessed off-line with a Marquardt non-linear curve fitting
program developed for this application. Conventional spot
photobleaching data were analyzed assuming no bleach-
ing by the probe beam while HPI-FPR data were analyzed
to allow a non-zero rate of probe bleaching. In some in-
stances, the ratio of bleach and probe intensities and the
length of the bleach pulse were input into the fitting proce-
dure to fix the relation between the rate of probe bleaching
and the extent of bleaching by the bleaching pulse. This
strategy reduced the number of fitted quantities by one
and, hence, improved the precision of other fitted param-
eters. For curve fitting purposes, fluorescence recovery
curves were calculated either from the series solution,
or from direct numerical simulation, of the bleaching–
diffusion equation as described below. Analysis of each
recovery trace yielded the initial fluorescence, the rate
constant for bleaching in the probe beam (set to zero for
conventional spot data), the extent K of bleaching in the
bleach pulse [1], the diffusion coefficient and the frac-
tion of fluorescent molecules mobile on the experimental
timescale, as well as linear estimates of uncertainties in
these quantities. Average values for parameters obtained
from replicate measurements are presented ± the stan-
dard deviation of the replicate values.

THEORY UNDERLYING ANALYSIS
OF HPI-FPR DATA

Efficient calculation of diffusion accompanied by
continuous bleaching is not a trivial problem. The corre-

sponding differential equation does not represent a stan-
dard problem in heat conduction and so has not benefitted
from the extensive attention historically accorded such
topics. A number of other investigators have examined
various aspects of continuous photobleaching [8–11], but
the specific issue of obtaining accurate diffusion parame-
ters from pulse photobleaching data where the probe beam
causes substantial bleaching does not seem to have been
addressed adequately. For isotropic diffusion of a single
species accompanied by bleaching by a radially symmet-
ric beam, the diffusion equation is

D∇2c(r, t) − BI (r, t)c(r, t) = ∂c(r, t)

∂t
(1)

where c(r, t) is the fluorophore concentration, D is the
diffusion coefficient, I = I(r, t) is the light intensity and
B is the rate-constant for bleaching by light of unit
intensity. Assuming the light beam to possess a con-
stant Gaussian radial profile, we may replace I(r, t) with
exp(−2r2/r2

0 ) I (t) and, substituting g2 for 2/r2
0 , rearrange

the equation to read

D∇2c − ∂c

∂t
= Be−g2r2

I (t) c (2)

Calculation of probe bleaching effects on Gaussian spot
photobleaching data can be approached in various ways.
We consider two particular strategies with differing ranges
of applicability and levels of sophistication.

Approach 1: Power series solution of differential
equation for coupled diffusion and bleaching in a Gaus-
sian beam.

We assert the existence of a power series solution
in B for the inhomogeneous partial differential equation,
Eq. (2) [12]. Without loss of generality, the first term of
this series may be taken to be unity. Further, B can be
arbitrarily partitioned into the product of two constants
B′ and B′′, either of which may be taken to be the power
series variable.

c = 1 +
∞∑

n=1

Bnc′
n = 1 +

∞∑

n=1

(B ′B ′′)nc′
n (3)

Equating like powers of B′, and then setting B′′ equal
to B, we obtain a series of functions

c = 1 +
∞∑

n=1

cn (4)

for which the recursion relation is

D∇2cn − ∂cn

∂t
= e−g2r2

BI (t)cn−1 (5)
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The c in Eq. (4) then converges for all BI(t). We assert
that each cn exists as a Bessel Fourier transform:

cn =
∫ ∞

k=0
an(k, t)J0(kr)kdk (6)

Since Bessel functions are Eigenfunctions of the
Laplacian in radial coordinates, we combine Eqs. (5) and
(6) to obtain

−k2Dan(k, t) − dan(k, t)

dt

=
∫ ∞

r=0
BI (t)

[
e−g2r2

∫ ∞

�=0
an−1(�, t)J0(lr)ldl

]
J0(kr)rdr

=
∫ ∞

l=0
BI (t)an−1(l, t)

[∫ ∞

r=0
e−g2r2

J0(kr)J0(lr)rdr

]

× ldl = bn−1(k, t) (7)

where

bn−1(k, t) = BI (t)

2g2

∫ ∞

l=0
an−1(l, t)e

− k2+l2

4g2 I0

(
kl

2g2

)
ldl

(8)
Evaluation of the inner integral in Eq. (7) is per

Gradshteyn and Ryzhik 6-633.2 [13]. The right-hand side
of Eq. (7) is thus an explicit function of t, namely through
the known coefficients an−1(k, t) comprising the previous
term. The inhomogeneous first-order differential equation
can be solved explicitly [14] and, if the initial condition
is taken to be that c = 1 at t = 0, then we obtain

an(k, t) = e−k2Dt

∫ t

t ′=0
ek2Dt ′bn−1(k, t ′)dt ′ (9)

In the more general case, a distribution of diffusion
coefficients Di having fractions fi, respectively, will be
observed. In either case, we may write

s(k, t) =
∑

i

fie
−k2Dit (10)

Then Eq. (8) can be re-written as a convolution

an(k, t) =
∫ t

t ′=0
s(k, t − t ′)bn(k, t ′)dt ′ = s(k) ⊗ b(k)

(11)
The preceding equation allows the fluorophore dis-

tribution function c to be evaluated for any beam intensity
varying arbitrarily with time and for any diffusion constant
distribution. For computational purposes, the integration
indicated in Eq. (8) can be conveniently accomplished
by multiplying a vector containing the an−1 by a suitable
matrix. A Fast Fourier Transform-based convolution al-
lows Eqs. (9) and (11) to be evaluated efficiently and this
overall strategy affords a particularly efficient approach to
describing diffusive behavior in kinetically heterogenous

Fig. 1. FPR traces for a sample bleached by a Gaussian probe beam.
r0 = 1, D = 0.002r2

0 /pt , b = 0.002/pt, K = 1.6. Various number of terms
have been used in the series solution. It is evident that at least five terms
are needed to represent the actual recovery. The dotted line, calculated
from Eq. (19) which corresponds effectively to a one-term series so-
lution, represents the level to which a fully mobile fluorophore would
recover.

systems. Depending upon the diffusion constant, probe
bleaching rate and extent of bleaching in the bleaching
pulse, various number of terms in Eq. (4) may be needed
to achieve satisfactory series convergence. We typically
begin with eight such terms and adjust this number as
needed. Once the fluorophore concentration is evaluated,
the experimental fluorescence signal F(t) is easily calcu-
lated as

F (t) = F0

2g2

∫ ∞

r=0
e−g2r2

I (t)c(r, t)rdr (12)

Figure 1 shows a FPR trace for a sample bleached
by the probe beam as calculated by the process just de-
scribed. The diffusion constant is 0.002r2

0 /pt . A series of
eight terms was used and the Figure shows the recovery
trace obtained as various numbers of terms are retained.
The extent of probe bleaching observed here, 0.002/pt,
represents near to the maximum amount which would be
of interest as does the amount of bleaching in the pulse,
approximately 50%. It is clear that at least five terms
are needed to model this situation even approximately
and all eight terms can profitably be used. Such simula-
tions make clear that, whenever data include a substantial
amount of probe bleaching, analysis using a first-order
approximation is inadequate. The figure also includes a
baseline, calculated via Eq. (19) developed in Appendix
1, which suggests, very approximately, the level to which
fluorescence of a fully mobile species would recover af-
ter a bleaching pulse. A more accurate baseline can be
calculated by evaluating Eq. (12) for a sufficient number
of terms and omitting the bleaching pulse so that only
bleaching from the constant-intensity probe beam is con-
sidered.
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In general, we have found that either the Bessel-
Fourier transform approach just described or a direct sim-
ulation approach outlined subsequently are most practical
for analysis of actual cellular data since both methods ac-
commodate large amount of bleaching by either probe or
bleaching pulse and such large degrees of bleaching are
common in cellular experiments. However, if extents of
bleaching by the probe and pulse are both small, then a
derivation shown in Appendix 1 provides an analytical
expression for the shape of the fluorescence baseline in
the absence of a bleaching pulse, as well as for recovery
after a bleach.

Approach 2: Direct simulation of recovery kinetics
given arbitrary extents of bleaching and arbitrary beam
profiles.

Analytical expressions like those described above
can be valuable aids to understanding the underlying phys-
ical reality of a given photobleaching experiment and for
analysis of particular types of photobleaching data. How-
ever, such solutions can be quite complex and each is
devised for a particular beam profile. Thus, we found di-
rect finite-difference solution of the coupled difusion and
bleaching equation, i.e. Eq. (1) for radial coordinates, use-
ful in data analysis. An optimized numerical solution of
this equation in various coordinate systems [12] was used
to simulate the time-evolution of fluorescence recovery
kinetics within a special-purpose Marquardt non-linear
fitting program. A key component of this analysis is that
the time increments between successive evaluations of
concentration profiles are allowed to vary in proportion
to square of the spot size divided by the current diffusion
coefficient. This permits the calculation to proceed with
the maximum speed consistent with stability of the nu-
merical solution. This process allows fluorescence traces
obtained in spot, fringe and other FPR bleaching geome-
tries, each involving arbitrary extents of probe bleaching
to be conveniently analyzed. For instance, we have pre-
viously applied this approach to analysis of interference
fringe FPR data obtained using total internal reflection
illumination [4].

RESULTS AND DISCUSSION

Even Small Amounts of Sample Bleaching in
the Probe Beam Can Invalidate Diffusion Parameters
Obtained by Conventional FPR Methods

Figure 2 simulates a spot photobleaching recovery
trace as typically recorded for a membrane protein on
a single cell. This trace illustrates the consequences of
increasing FPR probe beam intensity in an effort to in-
crease fluorescence signal. Equation (12) was used to sim-

Fig. 2. Simulated photobleaching recovery data as typically recorded
for a single cell. The sample has been exposed to the probe beam for a
substantial time before data are obtained. Naive analysis of these data
(smooth curve) yields grossly inaccurate diffusion parameters (see text).

ulate behavior of a protein with a diffusion coefficient of
1 × 10−10 cm2 s−1 and a mobility (M) of 100% in a 1 µm
probe beam which bleaches at a rate of 0.001 s−1. As seen
in the figure, these data appear to be more-or-less sat-
isfactorily fitted by a conventional (1+t/t1/2)−1 recovery
kinetics model [1]. However, the recovered parameters
bear little relation to those which generated the data. The
diffusion coefficient is recovered as 1.7 × 10−10 cm2 s−1

or 70% too high while the mobility is estimated as only
75%, that is, 25% too low. Similar difficulties also arise
with data obtained fringe photobleaching where bleach-
ing by the probe beam occurs. One must now ask what
factors invalidate the diffusion parameters obtained.

Obtaining Accurate Diffusion Parameter from Spot
FPR Requires Either That the Probe Beam Intensity
be Very Low or That Data be Obtained from
the Instant of Cell Exposure to the Probe Beam

The reason for the previously described discrepancy
becomes apparent upon inspection of Fig. 3. This plot
shows the full theoretical curve giving rise to the simulated
experimental data in Fig. 2. As is typical in such experi-
ments, the sample has been exposed to the probe beam for
a substantial but indeterminate time before experimental
data are recorded and thus the rate and extent of sample
bleaching in the probe beam are never apparent. It is the
magnitude of this on-going bleaching which invalidates
the calculated results. Naturally, such bleaching can be
avoided by use of extremely low probe beam intensities.
However, such intensities rarely yield satisfactory data,
especially with sparsely expressed membrane proteins.
However, if data are taken from the instant of cell
encounter with the probe beam (Fig. 4) and analyzed
properly, then the parent diffusion parameters can be
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Fig. 3. Full theoretical curve (Eq. (12)) corresponding to the simulated
experimental curve in Fig. 2. The substantial sample bleaching in the
probe beam is only apparent when data are acquired from the beginning
of cell exposure to this beam.

accurately recovered. This type of data, which includes
points beginning at the initial cell exposure to the probe
beam, can only be obtained using some special technique
to identify, align and focus on the cell. We use transmitted
light to identify cells and a low-power 635 nm diode laser
co-linear with the argon laser probe beam to align cells in
the laser beam and to focus the beam on one or another
membrane. This figure also shows why data analysis
must be based on a model properly describing probe
bleaching. Such bleaching causes sample fluorescence to
decrease with time in a complicated logarithmic fashion
(Eq. (19)) so that the “baseline” to which fluorescence
recovers never becomes level or even linear.

HPI-FPR Measurements Yield Diffusion Parameters
for VFP-Species with Precision Improved Over
Conventional Spot FPR Methods

Figure 5 compares conventional and high probe in-
tensity fluorescence recovery curves for GFP-LHR ex-

Fig. 4. Comparison of conventional spot FPR and HPI-FPR measure-
ments of GFP-LHR lateral diffusion on CHO cells at 25◦C. The HPI
measurements affords 7-fold increased signal and hence 2.6-fold im-
proved statistical precision.

Fig. 5. Measurement by HPI-FPR of lateral diffusion of the sparsely
expressed MAFA protein on 2H3 cells. Previously, measurement of this
diffusion by conventional spot FPR proved impossible and interference
fringe methods had to be employed.

pressed on CHO cells. The probe intensity used in
the conventional trace was selected to give no appar-
ent bleaching over several recovery half times while
the probe beam in the HPI-FPR experiment caused ap-
proximately 50% bleaching over this period. Analysis of
the traces gives diffusion parameters agreeing well with
one another, yielding values of (5.6 ± 6.2) × 10−10 and
(9.2 ± 5.9) × 10−10 cm2 s−1 and mobilities of (53 ± 17)
and (47 ± 42)% for the conventional and HPI-FPR traces
with n = 67 and n = 26, respectively. These measurements
demonstrate that the experimental and data analysis tech-
niques described previously satisfactorily deal with large
extents of probe bleaching. Thus much larger signals can
be obtained using HPI-FPR methods, in this instance, ap-
proximately 7-fold larger than that obtained in the conven-
tional experiment. The statistical uncertainty in measured
diffusion parameters is thus improved 2.6-fold by the HPI-
FPR approach, as is also seen by comparison of the esti-
mates of uncertainties in the fitted parameters yielded by
the non-linear curve fitting procedures (data not shown).
We have also applied HPI-FPR methods to measuring
mobilities of a number of other VFP-membrane proteins,
including GFP-gonadotropin releasing hormone receptor,
GFP-erbB1 and YFP-erbB2, all expressed on CHO cells
(data not shown).

HPI-FPR is Applicable to Membrane Proteins
Bearing Antibody or Hormone Labels as Well
as to VFP Fusion Proteins

The enhanced FPR method described above is ap-
plicable to any fluorescent cell surface species and will
be useful whenever receptor expression is sparse and/or
when cells exhibit any type of cytoplasmic fluorescence.
One example of such a situation is the Mast Cell Function-
Associated Antigen (MAFA) regulatory protein [7] of
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2H3 cells which occurs in only 20,000 copies per cell.
Fig. 5 shows successful measurement of MAFA diffu-
sion on these cells by means of HPI spot photobleach-
ing measurements using Alexa 488-G63 MAFA-specific
Fab probe. Previous attempts to measure this diffusion
by conventional spot FPR proved unsuccessful owing to
low fluorescence signals. Analysis of the HPI data shown
yields a diffusion constant of (0.4 ± 0.2) × 10−10 cm2 s−1

and a fractional mobility of (68 ± 23)% for n = 3. These
values differ somewhat from previously published results
[7] determined by interference fringe methods, namely
(1.1 ± 0.4) × 10−10 cm2 s−1and (31±7)% for n = 8. Given
the extremely low expression level of MAFA, and corre-
spondingly low membrane fluorescence, it seems likely
that this discrepancy arises in part from cytoplasmic fluo-
rescent species, which unavoidably contribute to interfer-
ence fringe photobleaching, but which are rejected by the
confocal aperture used in HPI-FPR. Moreover, we have
noted substantial cell-to-cell variability in FPR measure-
ments on MAFA. This may arise from statistical fluctua-
tions in the number and environment of the small number,
perhaps 50, of MAFA molecules examined in any single
spot photobleaching experiment. Other instances, not in-
cluded here, of HPI-FPR measurements of mobilities of
membrane proteins bearing antibody or hormone labels
include TRITC-labeled human chorionic gonadotropin
bound to LHR expressed on 293 cells and Type I Fcε
receptor-bound Cy3-IgE on 2H3 cells.

CONCLUSIONS

We report here an advance in fluorescence photo-
bleaching recovery techniques for measuring membrane
molecule diffusion on living cells. This technique
addresses problems arising from low levels of receptor
expression in the presence of fluorescent cytoplasmic
species. Hence it is particularly well-suited to examining
membrane dynamics of VFP-fusion proteins. Other
investigators, for example [11], have considered effects
of probe bleaching on photobleaching recovery measure-
ments, but we present here the first procedure for dealing
with laser intensities which vary arbitrarily over time and
for analyzing data obtained high extents of bleaching by
either the probe beam or bleaching pulse. HPI-FPR main-
tains the confocality of conventional spot measurements
but allows many-fold enhanced signals to be obtained.
An important contribution of improved precision in such
measurements is the possible identification of cell-to-cell
variation in biophysical parameters currently obscured
by the poor reproducibility of diffusion data. Moreover,
the techniques presented for HPI-FPR data analysis

are equally applicable to continuous photobleaching
experiments and make possible straightforward analysis
of such measurements where excitation intensity varies
continuously over time.

APPENDIX 1: SMALL EXTENTS OF PROBE
AND PULSE BLEACHING IN A GAUSSIAN SPOT

Consider a sample examined in a probe beam of con-
stant peak intensity Ip where the ongoing rate of bleaching
is small, i.e. that BIp � 1, and where a brief pulse of high
peak intensity Ib and duration �t quickly bleaches a small
“crater” in the sample. We can without loss of generality
replace c with 1−cb where cb = cb(r, t) represents the frac-
tion of irreversible photobleaching at any instant. Then,
after the conclusion of the bleaching pulse and since the
extent of bleaching is small, Eq. (2) becomes

− D∇2cb + ∂cb

∂t
= Be−g2r2

Ip(1 − cb) (13)

We insist that cb and exp (−g2r2) can both be repre-
sented by Bessel-Fourier expansions.

cb(r, t) =
∫ ∞

k=0
a(k, t)J0(kr)kdk

e−g2r2 =
∫ ∞

k=0

(
1

2g2
e−k2/4g2

)
J0(kr)kdk

(14)

Inserting these expressions into Eq. (3) we obtain

Dk2a(k, t) + da(k, t)

dt
= BIp

2g2
e−k2/4g2

(15)

Then, observing that ak(0) = 0, the solution of Eq. (5)
can be written by inspection as

a(k, t) = BIp

2Dg2k2
e−k2/4g2

(
1 − e−k2Dt

)
(16)

Equation (16) effectively represents the Bessel-
Fourier expansion of the first term of Eq. (4). While an
analytical expression for the actual fluorophore distribu-
tion can, with sufficient effort, be obtained, we actually
require only the time-dependent normalized fluorescence
depletion signal �F = F(0)−F(t) which is given by

�F/F (0) = 2g2
∫ ∞

r=0
cb(r, t)e−g2r2

Ip rdr

= BIp

D

∫ ∞

r=0
e−g2r2

(∫ ∞

k=0

1

k2
e−k2/4g2

(17)

× (
1 − e−k2Dt

)
J0(kr)kdk

)
rdr

= BIp

2g2D

∫ ∞

k=0
e−k2/2g2

(
1 − e−k2Dt

)dk

k
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Now, we substitute z for k2/2g2 and t′ for 2g2Dt to
obtain

�F/F (0) = BIp

4g2D

∞∑

n=1

(−1)n−1t ′n

n!

∫ ∞

z=0
zn−1e−zdz

= BIp

4g2D

∞∑

n=1

(−1)n−1t ′n

n
(18)

= BIp

4g2D
�n

(
1 + t ′

)

We can replace g2 with 2/r2
0 and t′ with t/t1/2 to

obtain.

�F/F (0) = BIpt1/2

2
�n

(
1 + t/t1/2

)
(19)

Equation (19) provides a convenient closed-form ap-
proximation of the evolution of fluorescence signal during
bleaching from the probe beam and, in Fig. 5, this approx-
imate baseline is shown as a dotted line. The amount of
bleaching in this example is too high for Eq. (19) to apply
quantitatively, since eight terms in Eq. (4) were needed
to represent the recovery after the bleaching pulse and
Eq. (19) is derived from only the first such term. Nonethe-
less, the plot makes clear that the baseline to which flu-
orescence recovers in the presence of bleaching by the
probe beam never becomes flat or even linear. Hence, data
analysis needs to explicitly deal with probe bleaching if
diffusion parameters are to be recovered accurately.

Because the extent of bleaching by both probe and
pulse is assumed to be small, the recovery of fluorescence
signal after a brief bleaching pulse of intensity Ib and du-
ration �t and occurring at a time tb after initial exposure
of the sample to light, can, as a first-order approximation,
be calculated independently. For derivation of this recov-
ery, see, for example, Axelrod et al. [1]. The final result
becomes

F/F (0) = 1 − BIpt1/2

2
�n

(
1 + t/t1/2

)
(t < tb)

= 1 − BIpt1/2

2
�n

(
1 + t/t1/2

)
(20)

−BIb�t

2

1

1 + (t − tb)/t1/2
(t ≥ tb)

APPENDIX 2: SMALL EXTENTS OF PROBE
AND PULSE BLEACHING IN A UNIFORM
CIRCULAR SPOT

In certain situations, for example when photobleach-
ing an extended spot in a confocal microscope, a circular

region of radius r0 may be illuminated effectively uni-
formly with light of intensity Ip. This allows a approximate
solution of the diffusion equation using Laplace trans-
forms by solving the diffusion equations inside and out-
side the spot separately and then insisting the fluorophore
concentration be continuous across the spot boundary. In
fact, only the fluorophore concentration inside the spot
is required as only from there does fluorescence signal
arise. The key elements in this approach are demonstrated
in Ozişik’s examples 8–1 and 7–22 [15]. We begin with
separate equations inside and outside the spot, designating
c1 and c2 the fluorophore concentrations inside and out-
side, respectively. For convenience we denote bleaching
rate constant BIp by the symbol h

D∇2c1(r, t) − hc1(r, t) = dc1(r, t)

dt
(0 ≤ r ≤ b)

D∇2c2(r, t) = dc2(r, t)

dt
(b ≤ r < ∞) (21)

We apply the Laplace transform with respect to time,
insist that both c1 and c2 are everywhere 1 at t = 0 and
denote the transform variable by s and the transforms of
c1 and c2 by θ 1 and θ2, respectively. There results

D∇2θ1 − (h + s)θ1 = 0 (0 ≤ r < r0)

D∇2θ2 − sθ2 = 0 (r0 < r < ∞) (22)

The solutions of Eq. set (22) are linear combinations
of modified Bessel functions I0 and K0. Since θ1 is finite
for r = 0, θ1 contains no K0. Likewise, since θ2 is unity
at r = ∞ for all t, θ2 contains no I0. It is convenient to
denote (s/D)1/2 by m and ((s+h)/D)1/2 by n. Then

θ1 = UI0(nr)

θ2 = V K0(mr) (23)

where U and V are constants. Insisting that θ1 and θ2, and
their first derivatives as well, agree at r = r0 for all t allows
evaluation of U and V and hence of θ1 and θ2.

θ1 = 1

s + h
+

(
1
s

− 1
s+h

)
[mK1(mr0)I0(nr)]

mI0(nr0)K1(mr0) + nI1(nr0)K0(mr0)
;

θ2 = 1

s
− ( 1

s
− 1

s+h
) [mK0(mr0)I1(nr)]

mI0(nr0)K1(mr0) + nI1(nr0)K0(mr0)
(24)

Inversion of the Laplace transform involves use of
asymptotic expansions for the modified Bessel functions
and their derivatives valid for large s and, hence, for small
times t. These expansions can be found in Abramowitz
and Stegun sections 9.7.1–9.7.4 [16] and yield the Laplace
transform as a series of terms of the form e−

√
s/sn/2. These

terms can be inverted to obtain a series solution valid for
r �=0 and for short times t. We present here only the lowest-
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order term exhibiting coupling of diffusion and bleaching
by the probe beam.

c1 = e−ht

(
1 − h

4D

√
r0

r

{
2(r0 − r)

√
Dt

π
e−(r0 − r)2/

4Dt

+ [
(r0 − r)2 + 2Dt

]
erfc

r0 − r

2
√

Dt

}
+ · · ·

)
(0 < r ≤ r0)

c2 = 1 − h

4D

√
r0

r

{
−2(r − r0)

√
Dt

π
e−(r − r0)2/

4Dt

+ [
(r − r0)2 + 2Dt

]
erfc

r − r0

2
√

Dt

}
+ · · · (r0 ≤ r < ∞)

(25)

However, since our interest actually lies only in the
fluorescence signal, we can return to Eq. (4) and integrate
across the illuminated area to obtain the average Laplace
transform, proportional to the total fluorescence signal.

〈θ1〉 = 1

s + h
+ 2

nb

( 1
s

− 1
s+h

) [mK1(mb)I1(nb)]

mI0(nb)K1(mb) + nI1(nb)K0(mb)
(26)

Again using series expansion of the modified Bessel
functions and inverting, we find that the fluorescence sig-
nal can be represented as

F = F0e
−ht

(
1 + 4h

3r0

√
Dt3

π
+ · · ·

)
(27)

Figure 6 shows the evolution of fluorescence from
a uniformly illuminated region experiencing coupled
bleaching and diffusion as described in Eq. (25) for a sam-
ple with D = 0.02r2

0 /pt and h = 0.02/pt . The coupling
of diffusion and bleaching is clear from the evolution over
time of the shape of the bleached region which is initially

Fig. 6. Concentration profiles for a sample continuously bleached by
a uniform circular probe beam. The inset shows how decay of sample
fluorescence during observation in the presence and absence of diffusion.

flat but soon becomes a rounded depression. The actual
fluorescence signal for D = 0.02 and D = 0 is plotted in
the inset of Fig. 6. As is the case for a Gaussian spot, a
plot of the fluorescence versus time shows a steeper initial
portion and then a decreasing negative slope as diffusion
into the bleached area becomes more significant. It is clear
that the shape of the fluorescence baseline, in the absence
of a bleaching pulse, will continue to evolve over time and
so must be explicitly incorporated in analysis of FPR data
accompanied by any noticeable amount of bleaching by
the probe beam. One should note that this series treatment
is only an approximation valid for short times and so does
not itself provide a closed-form function suitable for pro-
jecting an extended fluorescence baseline in the absence
of a bleaching pulse. For this purpose, numerical solution,
as described above, of the differential equation describing
coupled beaching and diffusion is necessary.
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